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. 4 Abstract 7

We investigate'the linear stability of plane Couette flow of an u er convected Maxwell
fluid using a spectral method to compute the eigenvalues. No instabilities are found.
This is in awreement with the results of Ho and Denn ill and L and Finlayson [2], but
contradicts proofswof instability given by Gorodtsov and Leo ov 3l-'-and Akbay and
Frischmann' 4,5i The errors in those arguments are pointed _out.'~~ also fnd that-th~e

numerical discretization can generate artificial instabilities seealso , The qualitative
behavior of the eigenvalue spectrum as well as the artificial instabilities is discussed.
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SIGNIFICANCE AND EXPLANATION

In the extrusion of polymers from a pipe, an instability known as melt fracture is
frequently observed. There is considerable controversy concerning the question whether
this instability develops in the inflow region, the outflow region or in the pipe itself and
which physical effects are causing it. One of the hypotheses has been that it may arise from
an instability in parallel shear flow, and that somehow a large ratio of the first normal stress
difference to the shear stress (or a similar quantity) is responsible for causing instability.
In this paper, the authors study a particular model of a viscoelastic fluid, and the results
indicate that plane Couette flow of such a fluid is always linearly stable. The results
therefore question the explanation of melt fracture mentioned above.

The paper also shows that artificial instabilities can arise from numerical discretiza-
tion. This observation is relevant in the context of numerical simulations of flows of
viscoelastic fluids, which have encountered many problems.
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LINEAR STABILITY OF PLANE COUETTE FLOW

OF AN UPPER CONVECTED MAXWELL FLUID

Michael Renardy' 2 and Yuriko Renardy'

1. Introduction

In polymer processing, instabilities known as melt fracture are frequently observed
when the flow rate exceeds a critical value (see ]7,81 for reviews). A satisfactory explanation j. .'

for these instabilities has yet to be found, although there are a number of conjectures.
There may be more than one mechanism leading to these instabilities. For example, there
is some discussion whether the instability originates in parallel shear flow or in the inflow
or outflow region. In either case, it is not understood what the physical mechanisms are ''

and which features a fluid model must or must not have in order to predict the instability.
In this paper we study the linear stability of plane Couette flow of an upper convected

Maxwell fluid. In our study we assume that stability can be determined from analyzing
the eigenvalues of the differential equation. While this is well known to be true for the
Navier-Stokes equations, there is no proof of this for the equations describing the upper
convected Maxwell fluid. For a discussion of possible problems that can arise in a general.:
context, see e.g. section 4.4 of 19].

Tlapa and Bernstein 110] have shown that Squire's theorem holds for the upper con-
vected Maxwell fluid (it is well known 111] that this is not the case for non-Newtonian fluids
in general), and therefore we can restrict our attention to two-dimensional disturbances.
There is, however, a special class of disturbances for which Squire's transformation degen-
erates, and which therefore requires a separate investigation. An incorrect investigation of
this class of disturbances, predicting instability, was given by Akbay and Frischmann 14,5].
We shall show in section 2 below that in fact these disturbances are always stable. -*

Gorodtsov and Leonov (31 give an exact analytical solution for the case of zero Z
Reynolds number. They find that in addition to a stable continuous spectrum, there
are exactly two eigenvalues for each value of a (the wave number in the streamwise di-
rection). These eigenvalues are also stable. Since the perturbation introduced by a small
Reynolds number is singular, it can not be concluded from this result that flows at small
Reynolds number are stable. Gorodtsov and Leonov give an incorrect proof of instability
at finite Reynolds numbers (see the discussion in section 2 below).

Denn and his coworkers 11,6,12] have studied the stability of plane Poiseuille flow of
an upper convected Maxwell fluid using a numerical scheme based on the shooting method.
They found 12] that viscoelastic effects are destabilizing at high Reynolds number and the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
2 Supported by the National Science Foundation under Grant Nos. MCS-8215064 and

DMS-8451761.
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critical Reynolds number is decreased by a small amount of elasticity (for Couette flow of
a Newtonian fluid, there is no critical Reynolds number 113]). At low Reynolds numbers,
no instabilities were found 11], but the numerical method led to artificial instabilities 11,6].
The recent study of Lee and Finlayson 121, which uses a similar numerical method to study
both Poiseuille and Couette flow. confirms the absence of instabilities at low Reynolds .|

nu mbers.
In this paper. we use a spectral method for the discretization and a matrix eigenvalue -

solver for computing the eigenvalues: i.e., in contrast to the earlier studies, we compute
all the eigenvalues of the problem, rather than focussing on a few individual eigenvalues.
This allows some insight into the overall qualitative behavior of the spectrum as well as the
qualitative nature of artificial instabilities produced by the discretization. Again, no insta-
bilities are found. In fact, the eigenvalues at low Reynolds number and high Weissenberg ,-.

number appear to be rather uninteresting, although they are difficult to compute. The
growth rales turn out to be close to the constant -1 /2W (W is the Weissenberg number).
At high Reynolds number, we found that a small amount of elasticity has a destabilizing
effect, but we did not find instability.

As far as the explanation of melt fracture is concerned, these results leave three
possible conclusions:
(a) Melt fracture does not originate in parallel shear flow.
(b) Melt fracture is a finite amplitude effect which can not be explained by linear stability

analysis.
(c) Melt fracture can not be explained by the upper convected Maxwell model.

In connection with the last alternative, it may be relevant that many models, but not
the upper convected Maxwell model, exhibit instabilities associated with a change of type
141. Also, a corrected analysis for the special class of perturbations studied by Akbay and

Frischmann seems to show instability (not associated with a change of type) for the lower .

convected Maxwell model (U. Akbay, private communication).

2. The governing equations and some analytical results

The flow considered is between two infinite parallel plates located at y ±1, which are
moving in the x-direction with velocities +1 and -1. The equations, given in dimensionless V

form, are the equation of motion

R[- + (u. V)u] = -Vp+ div T,

div u =0, (1)

and the constitutive law for the upper convected Maxwell fluid ,.'.

T - W ' 9 (u. V)T - (Vu)T - T(Vu)T ]j Vu (Vu)T. (2)a t

2
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Plane Couette flow is the trivial solution

uo = (y,o,0), To = ( 0 (3)

To this we add a small perturbation

u UO - v(y)e'ai -z rt, T To - S(y)e i (AX~i
R
Z + C't,  (4)

and the equations are linearized with respect to the components of v = (u. v, w) and S.
Tlapa and Bernstein 40: show that Squire's transformation

(a) 2 = a2 -3 2 .a 3 "0. o/&" = a/a, a' U =a u- Ow, V. V,, w =0,

a" W = aW, a"R' = aR (5)

can be used to transform the problem to the two-dimensional case. However, this breaks
down for the case where au + Ow = 0, and hence this case requires a separate investigation.
If au + Oiw = 0, it follows from the incompressibility condition

3iaiu + v'(Y) + i/3w = 0, (6)

and the boundary conditions at y = ±1 that v = 0, and equations (10) and (12) in 110i
lead to

RS(c + iay)w = w" + iaWw' - (a + 6 + 2W 2 )w, (7)

where
S = 1+ W(o + iay), (8)

and an identical equation for u. In (7), we set w = e-iawyo, and obtain

RS(o + iay)o = - (a2 + s 2 + ac,2 W 2 ). (9)

For o =/3 = 0, this agrees with equation (6a) in 15). We now multiply (9) by S4>, integrate
from -I to 1 and integrate by parts using the boundary conditions 0(1) = 0(- 1) = 0.

* This yields
RJ { - iay)IS12 i dy = - ,2+ ,' d

- J (,2 32 + a 2W2 ) , 2 dy. (10)

Taking real parts, we obtain

R ] dy= -(I W Re o) 1P'2 (a + o )j 2 dy

* 3
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-QW Im J '0 dy. (11)

Using the inequality

Qwkk'4. i'112 - 214,21012) (12)

we find that the right hand side of (11) is negative as long as Re a > -1/(2W). Hence the

left hand side must also be negative, and we conclude that Re a must be negative.

We now turn to the study of two-dimensional disturbances. For this case, we introduce

a stream function by u = v = -iaO. The equation for the stream function reads as

follows (see 13,12]):

0(4) + bs(y)0" + b2(y)" + b1 (y)4,O' + bo(y)i'

= SR(yia + a)(0" - a20), (13)

with boundary conditions

0-I) = 0(-I) = 10(1) =0'(I) = 0. (14) -

Here S is given by (8) and
S-1

b3(y) = 2iaW S
(s

b2(y) = -2a2 - 2 2 W 2 (S 1)2

S2

b1(y) -2 W S + 4iaWS2 (15)

a4 S 2 
21 a W

bo(y) = + 2a ---_ + 4"4 WS2 +S 2

An equivalent form is .,-,
[s d _02W2 a2S2 d2 • d  a2 222 !:

2 d2  12 + 2 a -Fc )~ 2 2
-- - -,'.".* i

dy2 y dy2  y

2
-S3R(iay + o)(-j - a 2 )0 = 0. (16)

The fact that the differential operator can be factored for R = 0 was used by Gorodtsov
and Leonov 131 to obtain an exact solution for this case. The line segment from - -a

to - - + ia is a continuous spectrum arising from the singular character of the equation "

when S = 0. Apart from that, there are exactly two eigenvalues for each value of a, for
which Gorodtsov and Leonov give an exact expression.

Gorodtsov and Leonov also claim to find eigenvalues with positive real parts when R # '...

0. Their analysis is based on their equation (4.2) which they derive as an approximation:
0(4) a 2ioWs"- 202(1 ±,FW 2 y/'2 - ,W 2 ),0 ' 

- 2a 2W(ia ± WV2)'

4
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4o a1 4 2v2(W 2y - 2(W 2 )O = 0. (17)

Their instability proof is based on finding eigenvalues with positive imaginary parts for
this equation. In fact, however, all eigenvalues for (17) are real. To see this, we multiply
(17) by 0 and integrate from -1 to 1. After some integrations by parts, we obtain

] 1/,2 -- 2-aW0" 2 6 - 2ia3'1'e0' - o4(1 ±2-v/EW2y)O12 dy

21;, 2 N/ 2jo 2i2 2 2 EIHOlf1  1
=2a Wi'\/2 y 'i2 dy - 2a2 I' 2  J ' -,- 612 262 dy 0. (18)

Since all other terms in this equation are real, C must also be real.
For a = 0. equation (13) reduces to

0(4) = (1 + Wo),o,". (19)

The case o = 0 is a special case as far as boundary conditions are concerned, because
v = -iao = 0 does not imply 4 = 0. However, the boundary condition 4 = 0 is obtained
if the perturbation to the flow rate f _I u(y) dy is constrained to be zero and a uniform
pressure gradient in the x-direction is allowed (alternatively, one can allow a nonzero flow
rate, but no pressure gradient; in that case, one obtains a different boundary condition). .
Equation (19) with boundary conditions (14) has the eigenvalues

-1± + +4Wcr"/ R
a N=l -2 w or- (20)-" ',:. .

2W (0

where a' (1 + aW)oc is given by -n 7r, n E N or by ~42where 8is a nonzero root
of j = tan #. Except for a finite number, all roots given by (20) have real part - -

1*W
Moreover, the convergence of the real parts to - is most rapid when WIR is large.

3. Numerical Results

For the numerical solution, we multiplied equation (13) by S 2, and discretized the
equation and boundary conditions by the Chebyshev r-method (see 15]). Since a occurs
in powers up to the fourth in the equation, this leads to a matrix eigenvalue problem of
the form

det (a4A 4 + c3 A.3 + o'2A 2 + oA + AO) = 0. (21)

Since four equations contain the boundary conditions, the number of eigenvalues is 4(N- 4)
when N Chebyshev modes are used. We rewrite (21) as a first order equation with a matrix
4 times the size of the A,, which is solved using the NAG routine F02GJF. This procedure
allows us to compute all the eigenvalues rather than just individual ones. It is, however.
quite sensitive to round-off error, and calculations at high values of UW had to be done in
quadruple precision (on a VAX 11/780). In a few cases, we obtained improved accuracy

5. %N"



for individual eigenvalues by using a large number of Chebyshev modes and a Newton ,af

iteration based directly on (21). For this, quadruple precision is not necessary. ~'*
The program was tested against the exact result given by (20). We also compared our

results with those of Lee and Finlayson 21. They give a table listing eigenvalues computed
for R -- 0.25. 11 = 1, a = 15 (in comparing their results with ours it must be noted

tha tevconsider Couette flow on the interval 0.1I rather than i-1, 1' and that their
eigrenvaliies are wave speeds rather than growth rates: we have transformed their results
to our present notation). The eigenvalues of Lee and Finlayson were computed using an
approximate equation. As Lee and Finlayson observe, this approximate equation produces
the imaginary parts of the eigenvalues almost perfectly, but approximates the real parts
rather poorlN, leading to artificial instabilities at higher WAeissenberg numbers. This is
also reflected' in the following comparison of our results (using 80 Chebyshev modes) with

theirs.

-Eigenvaliies with lowest imaginary parts Eigenvalues given in table VI of f21
* comnpuled by our program

-0.85349: 14.646i'

-O0.50964- 33.0211' -0.960±33.021it
-0.50824- 36.7661** ?

- 0.50694 39.7831'
*-0.50579± 42.4141'

-0.50480 44.7932' -0.834 +44.796i
-0.50398 ±46.9861'
-0.50332 :t 49.0381'

* -0.50280 =50.975i'
- -0.50253:-- 52.8241'

-0. 50 283 -: 54.631i
-0.50387 7-56.4 801
-0.50518 -- 58.4421'

-- 0.50623 -60.537i'
- 0.50683 62.7551' -0.543 - 62.757i

*-0.50700 65.0741'
0.50685 67.479i*

-0.50646 -69.956i*

-0.50595: 72.4941'
-0.50536 z: 75.0852' -0.432 -75.084i

-0.50478 it77.7201*
*-0.50421 80.3953i
- 0,50369 83.1051'

-0.50322 :85.8461'
* -0.50281 z 88.615i'
*-0.50245 = 91.408i' -0.417 - 91.407i'

-0.50214 :L94.224i' -0.420 -t94.224i'

-0.50187: 97.0601'

* 6



- 0.50164 99.915i
-0.50144:: 102.79i I.

-0.50128:: 105.67i -0.429 105.67i
-0.50119 108.58i
-0.50135: 111.49i.
-0.50236 114.42i
-0.505 79 7 117.371
-0.51427 -_ 120.35i -0.441 = 120.30i

The sparseness of the right column shows that the list of eigenvalues given by Lee and
Finlayson is far from complete. As can be seen, the real parts of all our eigenvalues fall
almost exactly on -Awexcept for the first pair. This one pair of eigenvalues behaves in a
qualitatively different fashion from the others. It corresponds co the two eigenvalues found ,

by Gorodtsov and Leonov 3' for R 0. The occurrence of the eigenvalues in complex
conjugate pairs is due to the reflection symmetry of the Couette flow problem about the
origin. For imaginary parts beyond 120. the numerical accuracy of our results deteriorates,
as already evident in the deviation of the real parts of the last few eigenvalues in the table ..

from . We recomputed the last eigenvalues in the table above with 120 Chebyshev
polynomials and found -0.50074 ± 120.30i.

We did a number of calculations at R = 1, a = 1 and various Weissenberg numbers.
The following table shows the eigenvalues with the smallest imaginary parts.

W =0.2 W =2 W =20 W =50

-4.9687 ± 0.6462i -0.36985 ± 0.7740i -0.026286 ± 0.9750i -0.010207 ± 0.9900
- 2.5311 ± 6.3370i -0.34582 ± 2.1862i -0.025106 ± 3.8928i -0.010003 ± 6.3345i ....

-2.4949 ± 9.8315i -0.27904 ± 3.5116i -0.025151 ± 4.1968i -0.010004 ± 6.5290i
-2.5063 ± 13.726i -0.24678 ± 4.5354i -0.025212 ± 4.4433i -0.010004 ± 6.6874i
-2.4971:: 17.155i -0.25892 ± 5.6822i -0.025294 ± 4.6597i -0.010005 ± 6.8269i
- 2.5026 ± 20.861i -0.24631 ± 6.7446i -0.025408 ± 4.8565i -0.010005 ± 6.9540i
-2.4984 - 24.300i -0.25396 ± 7.8720i -0.025527 ± 5.0397i -0.010006 ± 7.0720i
- 2.5014 ± 27.940i -0.24762 ± 8.9500i -0.025762 ± 5.2134i -0.010006 ± 7.1830i
-2.4990 ± 31.389i -0.25226 ± 10.073i -0.026085 ± 5.3910i -0.010007 ± 7.2884i
-2.5009 34.997i -0.24841 ± 11.160i -0.026198 ± 5.5778i -0.010008 ± 7.3891i

The first pair of eigenvalues corresponds to those of Gorodtsov and Leonov. They
approach the continuous spectrum (i.e. the line segment from - ia to + ia) as
K' -- 0. For large W. the real parts approach - and the imaginary parts tend to ±a.
For R = 0. this behavior can be deduced from the formula given in 13].

The remaining eigenvalues are basically lined up along the line Re C - We see
in the first two columns that the real parts approach - --L as the imaginary parts increase,
this is in fact suggested by the analysis for a = 0. The eigenvalues in the third column
appear to move away from - but this trend is reversed as the imaginary parts increase
further. For W = 50, a large number of Chebyshev modes (we used 120) was required
to obtain sufficiently good results. All the eigenvalues at W = 20 and in particular at
W -50 have real parts close to - A. This suggests that the real parts of the eigenvalues

7
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approach- . at large 14'. as is indeed the case for a = 0. The results tabulated above

for a = 15 suggest that the real parts of the eigenvalues also tend to - yw at large a. The -,

spacing between the imaginary parts of the eigenvalues decreases with increasing W, while "/
the imaginary part of the second eigenvalue first decreases and then increases again. This
behaviour would be expected from an analysis of characteristic wave speeds 114].

While the actual spectrum of the differential equation shows no instabilities, the nu-
merical approximation does. In the numerical calculations at low Reynolds numbers, we
can distinguish four clearly separated sets of eigenvalues:

1. Spurious eigenvalues: By this we mean eigenvalues of the discretized problem which
do not approximate those of the differential equation even qualitatively and lie in a
totally different part of the complex plane.

2. The two "Gorodtsov-Leonov" eigenvalues.
3. Eigenvalues approximating the remainder of the discrete spectrum.
4. Eigenvalues approximating the continuous spectrum, i.e. the line segment from -w

I :a to -~ +Za.
In all our calculations we found four spurious modes. These spurious modes exist even

in the Newtonian case [151 and they can be unstable. A certain number of the eigenvalues
in the third group gives good approximations to those of the differential equation, but as
the imaginary parts increase, the accuracy ultimately deteriorates. Since the real parts
are small compared to the imaginary parts, they are particularly affected and they can
in fact deteriorate to the point where they have the wrong sign, thus creating artificial
instabilities. Not surprisingly, this is most likely to happen at high Weissenberg numbers.
The approximation to the continuous spectrum is generally poor. This is not surprising.
The method used here approximates isolated eigenvalues with C'-eigenfunctions with
infinite order accuracy 115], but this is not the case for a continuous spectrum. The
approximation to the continuous spectrum is best near the ends and worst near the middle.
Again artificial instabilities develop at high Weissenberg numbers. We believe that the
"spurious" modes of Ho and Denn I 1] also result from poor approximation to the continuous
spectrum. The following table shows the number of numerically unstable eigenvalues as a
function of the number of Chebyshev modes at R = 1, a = 1 and W = 20.

No. of modes 30 40 50 60 80

Group 1 2 2 2 2 2
Group 3 8 10 14 16 22
Group 4 17 19 19 13 0

We see that the instabilities from the continuous spectrum disappear if a sufficient
number of Chebyshev modes is used, while those from the discrete spectrum only get
shifted towards higher imaginary parts, and the number of unstable eigenvalues actually
increases.

The equations for steady flow of an upper convected Maxwell fluid undergo a change
of type when RW 1 - 1 1V2 ]141. All the results reported above are subcritical, i.e.
RW < 1 + W 2 . As an example of a subcritical case, we looked at R 10, W = 2, a = 5. -:
The eigenvalues with the lowest imaginary parts are as follows:

r'.***r.o-.- r • .% %*- -.... ........... .. .... "."
• ,, . .. ,- . :,. -.*' ,. - ,.-. , . - ... ... . -. . .. *-. .. ...-.. ... ... ....-... '.. .- - . . ... . . . -. . ...... . .-.'....-..::..-.. -'..-:..



- 0.27302 ± .1768i*
-0.28615 0 .84631
-0.25010 t 0.9283i
-0.24455 ± 1.5281i

0.25267 t 2.08211
-0.25051 - 2.599; 1*

0.24896 - 3.07021
0.25073: 3. 51511

-0.24993 - 3.93711/
0.24991 1.336 11

-0.25015 -4.7198.
-0.35520 4.7784.,
- 0.24969 - 5.08581'

0.25060 5: .i

The change of type means that in a part of the domain the speed of the fluid exceeds
a characteristic wave speed. This manifests itself in the imaginary parts of the eigenvalues,
which now "fill out" the whole real axis including the interval (-a, a), rather than being
separated by a gap in the middle. The qualitative behavior of the real parts, however, is
unchanged; they are still close to - -, except for the twelveth pair, which represents the
Gorodtsov-Leonov eigenvalues.

We did a few calculations at a high Reynolds number (R = 10000, a = 1). In the
Newtonian case, the following asymptotic formula for the least stable eigenvalues holds for
R -- 00 (see 1161, section 31.1):

o -1.0626a 2/SR- ± i(a - 4.1288a 2/3R-/). (22)

At R 10000, a = 1, this is equal to -0.04932 ± 0.80836i. The following table shows our
computed results at various values of W.

W = 0.01 W = 0.1 W = 0.5 W= 2

--0.05205 j
- 0.81213i -0.05167 ±0.81164i -0.04984 ± 0.80960i -0.04157 ± 0.80409i

We see that elasticity has a destabilizing effect, but it does not seem to lead to insta-
bility. Apart from the spurious modes, we found no artificial instabilities of the numerical
discretization, unless very few Chebyshev modes are used. Even though the numerical
method is slower to converge at higher Reynolds numbers, it is less likely to produce
unstable eigenvalues.
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